
A F O R M A L I S M  OF N O N L I N E A R  

N O N E Q U I L  I B R I U M  T H E R M O D Y N A M I C S  

I.  F .  B a k h a r e v a *  UDC 536.7 

The var ia t iona l  f o r m a l i s m  is applied to the nonl inear  law of k inet ics  {scalar  p r o c e s s e s ) .  
Using the Lagrang ian  of a s y s t e m  as  some  function of state (entropy of l a rge  depa r tu r e s  f rom 
equil ibr ium) m a k e s  it poss ib le  to cons t ruc t  a f o r m a l i s m  of nonl inear  t he rmodynamics  which 
is analogous to the l inea r  case .  

We cons ide r  a c l a s s  of s c a l a r  nonl inear  nonequi l ibr ium p r o c e s s e s  subject  to the sys t em of dynamic 
equations 

x~ = k z(x 1 . . . . .  x,,), i = l, 2 . . . .  , n. (1) 

If (1) is expanded into a s e r i e s  and only the f i r s t - o r d e r  t e r m s  in the s ta te  v a r i a b l e s  x i a re  re ta ined,  
then the l inea r  law of kinet ics ,  in the the rmodynamic  in te rpre ta t ion ,  co r r e sponds  to the Osnager  sy s t em 
of equations [1]. 

One of the fundamental  p r o b l e m s  in nonl inear  nonequi l ibr ium the rmodynamics  is to find (1) in ex -  
pl ic i t  f o rm for  the en t i re  kinetic range  of a p r o c e s s  (0 <_ t -< ~). 

A s i m i l a r  s y s t e m  had been postula ted in [2] in the f o r m  of the t ime  theorem.  An analogous fo rm of 
equations was then der ived  in [3], but on a phys ica l  bas i s  using a s tochast ic  model  of a nonequil ibrium p r o -  
c e s s  r a t h e r  than by way of a p r i o r i  construct ion.  

A not l ess  impor tan t  theore t i ca l  p r o b l e m  is the cons t ruc t ion  of a the rmodynamic  f o r m a l i s m  for  non- 
l inea r  nonequi l ibr ium p r o c e s s e s :  the introduction of nonl inear  the rmodynamic  fo r ce s ,  nonlinear  i n c r e a s e s  
in ent ropy,  nonl inear  fo rce  equat ions,  etc.  

We will  show here  that ,  by extending the var ia t iona l  pr inc ip le  in nonl inear  t he rmodynamics  [4] to non-  
l i nea r  p r o c e s s e s  with due cons idera t ion  of the r e su l t s  in [3], it becomes  poss ib le  to r e p r e s e n t  the f o r m a l i s m  
of nonl inear  p r o c e s s e s  of a given type in jus t  as  s imple  t e r m s  as in the l inear  case .  

We will  r eca l l  that  for  n = 1, according  to [3], (1) can be wr i t t en  in the f o r m  

K = c e x p  - -  a Ox J" (3) 

It has  been a s s u m e d  here  that  the s y s t e m  tends toward equi l ibr ium in two opposing s teps ,  inasmuch 
as  S = 81 + S 2 r e p r e s e n t s  the total  ent ropy made  up of ent ropy S 1 in the forward  p r o c e s s  and entropy S 2 of 
the r e v e r s e  p r o c e s s .  The quantity S obeys the Gibbs rule.  

The quant i t ies  c and a a r e ,  to the f i r s t  approx imat ion  cons idered  independent of X, i. e . ,  a r e  r e -  
garded  as  phenomenologica l  constants .  

Consider ing that  the l inea r  the rmodynamic  fo rces  X a r e  defined by the re la t ion  

OAS OS 

X Ox Ox '  (4) 
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we can r ewr i t e  exp re s s ion  (2) as  

x = K {exp [ a X ] -  1}. (5) 

It is e a sy  to a s c e r t a i n  that exp re s s ion  (5) obeys  the co r re spondence  pr inciple:  expanding (5) into a 
MacLaur in  s e r i e s  and re ta in ing only the l inea r  t e r m s ,  we obtain the same  r e su l t s  as  those based on l inear  
t he rmodynamics .  It is poss ib le  then to de t e rmine  c and a in t e r m s  of the phenomenological  coeff icient  L, 
namely:  

ca = L. (6) 

An extension of the s ame  s tochas t ic  model  to the case  n > 1 leads to a s y s t e m  of kinetic equations: 

x, = .~  K,j  {exp [ajXj] - -  1}, 

J (7) 

o f [as~ ( a &  i ], K,j = / %  exp ( -  a, L--~j - \---~-x~/~,=of 

K~~ = K.  (~ = o), ( s )  

consider ing  now the l inea r  approx imat ions ,  we find 

0 a Kq ~ = L~j, Lij = Lj~. (9) 

F o r  fu r the r  ca icula t ions ,  the s y s t e m  of l inear  kinetic equations (7) will  be conveniently r ep re sen ted  
in the fo rm 

X~ = Z LijBi (exp ajXj - -  1), 
/ (10) 
i = l ,  2, . . . ,  n, 

with Bj e x p r e s s e d  as  

Bj  (X 1 . . . .  x,,) = a~ exp l - -  ai [ OSz - -  0S2 ~ I 
' . [ axs ( ax----~)=j=oJ 

Let  us now cons ider  (10) f rom the var ia t iona l  point of view [4]. 

We r eca l l  that  the va r ia t iona l  pr inc ip le  [4] is s ta ted as  follows: 

5 ~  ~ Ghxi = 0 
i 

with the Lagrange  function 

and the dissipation forces 

= - -  =~S (X1 ,  X. 2 . . . . .  X ~ )  

(11) 

(L2) 

(13) 

a r  , ( 1 4 )  
G ax~ 

(I)= 1 Z L~'x~xk. (15) 
i,k 

Equation (12) leads to the s y s t e m  of kinetic equations of l inea r  t he rmodynamics :  

x~ --= ~ Li~XI,. (16) 
k 

In accordance  with (1), we a s s u m e  that  the d iss ipa t ion  function is s t ruc tu ra l ly  a homogeneous second-  
o r d e r  one. In o ther  words ,  ~* is of the f o r m  (15) a lso  fa r  f r o m  equi! ibr ium.  (The a s t e r i s k  * will f rom 
now on r e f e r  to nonl inear  p r o c e s s e s ) .  F o r  ins tance ,  as  has been shown e a r l i e r  in [5], chemica l  reac t ions  
of an a r b i t r a r y  o r d e r  can belong to the same  c l a s s  of nonl inear  p r o c e s s e s .  Thus,  we have for  ~*: 

(17) (D*= ~-  (L~') * ~ s  

i , k  

663 



Since 

x~-+xh, k = I, 2 . . . . .  n, (18) 
0" - -~0 ,  

as  equi l ibr ium is approached  and the m a t r i x  of phenomenological  coeff ic ients  L* has been st ipulated con-  
s lant ,  hence it n e c e s s a r i l y  follows f rom (18) that 

L* == L (19) 

(the asterisk * with 5[~ will be from now on omitted). 

If the nonlinear dissipation forces are defined according to the same law (14), i. e. , if 

Q~_ no* 
Oxi i I, 2, n, (20) 

then the kinetic equations (10) become a consequence of the variational principle (12) with the Lagrange 
function ~ * 

~ *  = .i " ' "  .I' ~.~ ~ Bj (exp asX s -  1) dxj. (21) 
0 0 j 

Carry ing  the analogy with l inear  p r o c e s s e s  fur ther ,  and taking into account (13), we may  introduce 
the function 

AS, = _ _ i :  x~f BS (exp 1)) dxs "'" .f I X  asXs-- (22) 
6 0 j 

and define it as  the ent ropy of l a rge  d e p a r t u r e s  f rom equi l ibr ium,  of la rge  fluctuations.  More p rec i se ly ,  
AS* is the deviat ion of ent ropy f rom equi l ibr ium at  l a rge  values  of x i. Such an in te rpre ta t ion  of function 
(22) r equ i r e s  a spec ia l  s t a t i s t i ca l  bas is .  N e v e r t h e l e s s ,  as will be shown here ,  the introduction of AS* 
accord ing  to fo rmula  (22) appea r s  e x t r e m e l y  useful  for  const ruct ing a f o r m a l i s m  of nonl inear  t h e r m o -  
dynamics .  

We will  f i r s t  examine  the gene ra l  p r o p e r t i e s  of L~S*. 

1. Moving into the l inear  range,  we have 

~S*(xl . . . . .  x,,)-+AS(xl . . . . .  x,,) 
lira AS*(x 1 . . . . .  xo)---- 0. (23) 

x l , .  . . , x n  ~ O  

2. Unlike &S, function AS* does  not obey the Gibbs rule.  This fea ture  of ~S* appl ies  only in the 
region f a r  f rom equil ibr ium. 

3. The explici t  f o rm of AS* or  the d i f ferent ia l  equation for  dS* can be found f rom formula  (22). 

F o r  i l lus t ra t ion ,  we will  cons ider  an adiabat ical ly  insulated sy s t em with r reac t ions  of an a r b i t r a r y  
o rde r .  The d i f fe rent ia l  ve r s i on  of (22) is 

- -  exp -R m= 1 

Here  AN k is the deviat ion of the chemica l  potent ia l  of the k - th  component  f rom equi l ibr ium,  e x p r e s s e d  in 
t e r m s  of the deg ree  of complet ion of the given react ion,  I vkjl is the absolute value of the s to ich iomet r ic  
coeff icient  of the k - th  component  on the lef t -hand side of the j - th  reac t ion ,  and I vmjl is the absolute  value 
of the s to ich iomet r ic  coeff icient  of the m - t h  component  on the r ight-hand side of the j - th  react ion.  

It can be eas i ly  a sce r t a ined  that  a t  the l imit ,  as  equi l ibr ium is approached,  (24) becomes  the Gibbs 
equation (the s y s t e m  is adiabat ical ly  insulated): 

r 

TdS = M X Ajdxj. (25) 
i 
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The chemica l  agent  Aj of the j - th  reac t ion  is 
n 

Ai-~- - -  X %j~h- (26) 
k 

F o r m a l i s m  of Nonl inear  ThermodYnamics .  We introduce nonl inear  the rmodynamic  fo rces  X i , jus t  
as  in (4), 

X i = - -  OAS* i =  1, 2, n. (27) 
ax~ 

Applying the var ia t iona l  pr inc ip le  (12) with (27), (21), (22), and (20) taken into account,  we obtain 
the s y s t e m  of kinet ic  equations in the f o r m  

;, (28) 
k 

In o ther  words ,  the s y s t e m  of dynamic equations r e m a i n s  l inear  when r e p r e s e n t e d  in t e r m s  of fo rces .  
We reca l l  that  the m a t r i x  of phenomenologica l  coeff ic ients  Lik is known f rom l inear  t he rmodynamics  and 
sa t i s f i e s  the Osnager  r ec ip roc i ty  re la t ions .  

When applied to our  case  of chemica l  reac t ions ,  s y s t e m  (28) can  be e x p r e s s e d  as  

.~c s = LjsA~, ] =  1, 2 . . . . .  r, (29) 

where  the nonl inear  chemica l  agent  A ;  of the j - th  reac t ion  a p p e a r s  to play the rote  of nonl inear  fo rces :  

X ~ A , = R { e x p [ R 2 1 % s ] A ~ t , ] - - e x p [ -  ~ 2 Iv,:,/A~m]}, (30, 
k rn~p-~I 

with which expres s ion  (29) becomes  equivalent  to the law of m a s s  aetion. 

As equi l ibr ium is approached ,  A~ ~ Aj. Le t  us now de t e rmine  the nonl inear  ra te  of ent ropy change 
0 - # :  

dAS * IJ* 

dt 
Consider ing that AS* = AS*(xt, . . . .  Xn), we find that  

o* = L x ; ,  (a2) 
i 

i. e. , as  in the l inear  case ,  the r a t e  of en t ropy change is de te rmined  by the sum of p roduc t s  of conjugate 
t h e r m a l  f luxes and the rmodynamic  fo rces .  

We will now show that  the condition 

~* > o (33) 

is a c r i t e r i on  for  the evolution of nonl inear  p r o c e s s e s  in adiabat ica l ly  insulated sy s t ems .  Since 

a* = 2@*, (34) 

hence condition (33) is sa t i s f ied  by O* in a pos i t ive-def in i te  quadra t ic  f o rm ,  which is poss ib le  only if nil 
the e igenvalues  of m a t r i x  L a r e  posi t ive.  This  l a t t e r  r e q u i r e m e n t  is me t ,  as  a consequence of the Second 
Law of T h e r m o d y n a m i c s  

2q~ = ~ > 0. (35) 

"Under s t e ady - s t a t e  condit ions,  when AS* = const ,  the va r ia t iona l  pr inc ip le  (12) in the case  of non-  
l inea r  p r o c e s s e s  be com es  

Q[ 6x~ = 0. (36) 
i 

By v i r tue  of the a r b i t r a r i n e s s  of 6x i, we obtain the following s y s t e m  of equations 

(O~t)i = O, i =  1, 2 . . . . .  n, (37) 
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equivalent  to the condition 

6q)*= 0. 

Thus,  under  s teady-s ta te  conditions,  the rate  of entropy change ~* is minimum. 
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